Monotone Map
Definition 1.54. A monotone map between preorders (A, ≤_A) and (B, ≤_B) is a function f : A → B such that, for all elements x, y ∈ A, if x ≤_A y then f(x) ≤_B f(y).
module definitions.chapter1.MonotoneMap where open import definitions.chapter1.Preorder using (Preorder) open import Data.Product using (Σ; Σ-syntax) -- A monotone map between preorders (A, ≤_A) and (B, ≤_B) is a function -- f : A → B such that for all x, y ∈ A, if x ≤_A y then f(x) ≤_B f(y) -- Monotonic functions (order-preserving) Monotonic : {A B : Set} → (_≤₁_ : A → A → Set) → (_≤₂_ : B → B → Set) → (A → B) → Set Monotonic _≤₁_ _≤₂_ f = ∀ {x y} → x ≤₁ y → f x ≤₂ f y -- Monotonic function between preorders _⇒_ : Preorder → Preorder → Set P ⇒ Q = let open Preorder P renaming (Carrier to A; _≤_ to _≤₁_) open Preorder Q renaming (Carrier to B; _≤_ to _≤₂_) in Σ[ f ∈ (A → B) ] (Monotonic _≤₁_ _≤₂_ f) MonotoneMap : Preorder → Preorder → Set MonotoneMap P Q = P ⇒ Q