Closure Operator
Definition 1.112. A closure operator j : P → P on a preorder P is a monotone map such that for all p ∈ P we have
(a) p ≤ j(p),
(b) j(j(p)) ≅ j(p).
module definitions.chapter1.ClosureOperator where open import definitions.chapter1.Preorder using (Preorder) open import definitions.chapter1.MonotoneMap using (Monotonic) -- A closure operator on a preorder P is a monotone map j : P → P -- satisfying extensivity and idempotence record ClosureOperator (P : Preorder) : Set where open Preorder P field -- The closure function j : P → P j : Carrier → Carrier -- j is monotone j-monotonic : Monotonic _≤_ _≤_ j -- (a) Extensivity: p ≤ j(p) for all p ∈ P extensive : ∀ (p : Carrier) → p ≤ j p -- (b) Idempotence: j(j(p)) ≅ j(p) for all p ∈ P -- We use preorder equivalence (≅), not propositional equality (≡) idempotent : ∀ (p : Carrier) → j (j p) ≅ j p