{-# OPTIONS --cubical-compatible --safe #-}
module Data.List.Effectful where
open import Data.Bool.Base using (false; true)
open import Data.List.Base
  using (List; map; [_]; ap; []; _∷_; _++_; concat; concatMap)
open import Data.List.Properties
  using (++-identityʳ; ++-assoc; map-cong; concatMap-cong; map-concatMap
        ; concatMap-pure)
open import Effect.Choice using (RawChoice)
open import Effect.Empty using (RawEmpty)
open import Effect.Functor using (RawFunctor)
open import Effect.Applicative
  using (RawApplicative; RawApplicativeZero; RawAlternative)
open import Effect.Monad
  using (RawMonad; module Join; RawMonadZero; RawMonadPlus)
open import Function.Base using (flip; _∘_; const; _$_; id; _∘′_; _$′_)
open import Level using (Level)
open import Relation.Binary.PropositionalEquality.Core as ≡
  using (_≡_; _≢_; _≗_; refl)
open import Relation.Binary.PropositionalEquality.Properties as ≡
open ≡.≡-Reasoning
private
  variable
    ℓ : Level
    A : Set ℓ
functor : RawFunctor {ℓ} List
functor = record { _<$>_ = map }
applicative : RawApplicative {ℓ} List
applicative = record
  { rawFunctor = functor
  ; pure = [_]
  ; _<*>_  = ap
  }
empty : RawEmpty {ℓ} List
empty = record { empty = [] }
choice : RawChoice {ℓ} List
choice = record { _<|>_ = _++_ }
applicativeZero : RawApplicativeZero {ℓ} List
applicativeZero = record
  { rawApplicative = applicative
  ; rawEmpty = empty
  }
alternative : RawAlternative {ℓ} List
alternative = record
  { rawApplicativeZero = applicativeZero
  ; rawChoice = choice
  }
monad : ∀ {ℓ} → RawMonad {ℓ} List
monad = record
  { rawApplicative = applicative
  ; _>>=_  = flip concatMap
  }
join : List (List A) → List A
join = Join.join monad
monadZero : ∀ {ℓ} → RawMonadZero {ℓ} List
monadZero = record
  { rawMonad = monad
  ; rawEmpty = empty
  }
monadPlus : ∀ {ℓ} → RawMonadPlus {ℓ} List
monadPlus = record
  { rawMonadZero = monadZero
  ; rawChoice  = choice
  }
module TraversableA {f g F} (App : RawApplicative {f} {g} F) where
  open RawApplicative App
  sequenceA : ∀ {A} → List (F A) → F (List A)
  sequenceA []       = pure []
  sequenceA (x ∷ xs) = _∷_ <$> x <*> sequenceA xs
  mapA : ∀ {a} {A : Set a} {B} → (A → F B) → List A → F (List B)
  mapA f = sequenceA ∘ map f
  forA : ∀ {a} {A : Set a} {B} → List A → (A → F B) → F (List B)
  forA = flip mapA
module TraversableM {m n M} (Mon : RawMonad {m} {n} M) where
  open RawMonad Mon
  open TraversableA rawApplicative public
    renaming
    ( sequenceA to sequenceM
    ; mapA      to mapM
    ; forA      to forM
    )
private
  open module LMP {ℓ} = RawMonadPlus (monadPlus {ℓ = ℓ})
module MonadProperties where
  left-identity : ∀ {ℓ} {A B : Set ℓ} (x : A) (f : A → List B) →
                  (pure x >>= f) ≡ f x
  left-identity x f = ++-identityʳ (f x)
  right-identity : ∀ {ℓ} {A : Set ℓ} (xs : List A) →
                   (xs >>= pure) ≡ xs
  right-identity []       = refl
  right-identity (x ∷ xs) = ≡.cong (x ∷_) (right-identity xs)
  left-zero : ∀ {ℓ} {A B : Set ℓ} (f : A → List B) → (∅ >>= f) ≡ ∅
  left-zero f = refl
  right-zero : ∀ {ℓ} {A B : Set ℓ} (xs : List A) →
               (xs >>= const ∅) ≡ ∅ {A = B}
  right-zero []       = refl
  right-zero (x ∷ xs) = right-zero xs
  private
    not-left-distributive :
      let xs = true ∷ false ∷ []; f = pure; g = pure in
      (xs >>= λ x → f x ∣ g x) ≢ ((xs >>= f) ∣ (xs >>= g))
    not-left-distributive ()
  right-distributive : ∀ {ℓ} {A B : Set ℓ}
                       (xs ys : List A) (f : A → List B) →
                       (xs ∣ ys >>= f) ≡ ((xs >>= f) ∣ (ys >>= f))
  right-distributive []       ys f = refl
  right-distributive (x ∷ xs) ys f = begin
    f x ∣ (xs ∣ ys >>= f)              ≡⟨ ≡.cong (f x ∣_) $ right-distributive xs ys f ⟩
    f x ∣ ((xs >>= f) ∣ (ys >>= f))    ≡⟨ ≡.sym $ ++-assoc (f x) _ _ ⟩
    ((f x ∣ (xs >>= f)) ∣ (ys >>= f))  ∎
  associative : ∀ {ℓ} {A B C : Set ℓ}
                (xs : List A) (f : A → List B) (g : B → List C) →
                (xs >>= λ x → f x >>= g) ≡ (xs >>= f >>= g)
  associative []       f g = refl
  associative (x ∷ xs) f g = begin
    (f x >>= g) ∣ (xs >>= λ x → f x >>= g)  ≡⟨ ≡.cong ((f x >>= g) ∣_) $ associative xs f g ⟩
    (f x >>= g) ∣ (xs >>= f >>= g)          ≡⟨ ≡.sym $ right-distributive (f x) (xs >>= f) g ⟩
    (f x ∣ (xs >>= f) >>= g)                ∎
  cong : ∀ {ℓ} {A B : Set ℓ} {xs₁ xs₂} {f₁ f₂ : A → List B} →
         xs₁ ≡ xs₂ → f₁ ≗ f₂ → (xs₁ >>= f₁) ≡ (xs₂ >>= f₂)
  cong {xs₁ = xs} refl f₁≗f₂ = ≡.cong concat (map-cong f₁≗f₂ xs)
module Applicative where
  private
    module MP = MonadProperties
    
    pam : ∀ {ℓ} {A B : Set ℓ} → List A → (A → B) → List B
    pam xs f = xs >>= pure ∘ f
  
  left-zero : ∀ {ℓ} {A B : Set ℓ} → (xs : List A) → (∅ ⊛ xs) ≡ ∅ {A = B}
  left-zero xs = begin
    ∅ ⊛ xs          ≡⟨⟩
    (∅ >>= pam xs)  ≡⟨ MonadProperties.left-zero (pam xs) ⟩
    ∅               ∎
  
  right-zero : ∀ {ℓ} {A B : Set ℓ} → (fs : List (A → B)) → (fs ⊛ ∅) ≡ ∅
  right-zero {ℓ} fs = begin
    fs ⊛ ∅            ≡⟨⟩
    (fs >>= pam ∅)    ≡⟨ (MP.cong (refl {x = fs}) λ f →
                          MP.left-zero (pure ∘ f)) ⟩
    (fs >>= λ _ → ∅)  ≡⟨ MP.right-zero fs ⟩
    ∅                 ∎
  unfold-<$> : ∀ {ℓ} {A B : Set ℓ} → (f : A → B) (as : List A) →
               (f <$> as) ≡ (pure f ⊛ as)
  unfold-<$> f as = ≡.sym (++-identityʳ (f <$> as))
  
  unfold-⊛ : ∀ {ℓ} {A B : Set ℓ} → (fs : List (A → B)) (as : List A) →
             (fs ⊛ as) ≡ (fs >>= pam as)
  unfold-⊛ fs as = begin
    fs ⊛ as
      ≡⟨ concatMap-cong (λ f → ≡.cong (map f) (concatMap-pure as)) fs ⟨
    concatMap (λ f → map f (concatMap pure as)) fs
      ≡⟨ concatMap-cong (λ f → map-concatMap f pure as) fs ⟩
    concatMap (λ f → concatMap (λ x → pure (f x)) as) fs
      ≡⟨⟩
    (fs >>= pam as)
      ∎
  
  right-distributive : ∀ {ℓ} {A B : Set ℓ} (fs₁ fs₂ : List (A → B)) xs →
                       ((fs₁ ∣ fs₂) ⊛ xs) ≡ (fs₁ ⊛ xs ∣ fs₂ ⊛ xs)
  right-distributive fs₁ fs₂ xs = begin
    (fs₁ ∣ fs₂) ⊛ xs                     ≡⟨ unfold-⊛ (fs₁ ∣ fs₂) xs ⟩
    (fs₁ ∣ fs₂ >>= pam xs)               ≡⟨ MonadProperties.right-distributive fs₁ fs₂ (pam xs) ⟩
    (fs₁ >>= pam xs) ∣ (fs₂ >>= pam xs)  ≡⟨ ≡.cong₂ _∣_ (unfold-⊛ fs₁ xs) (unfold-⊛ fs₂ xs) ⟨
    (fs₁ ⊛ xs ∣ fs₂ ⊛ xs)                ∎
  
  private
    not-left-distributive :
      let fs = id ∷ id ∷ []; xs₁ = true ∷ []; xs₂ = true ∷ false ∷ [] in
      (fs ⊛ (xs₁ ∣ xs₂)) ≢ (fs ⊛ xs₁ ∣ fs ⊛ xs₂)
    not-left-distributive ()
  
  identity : ∀ {a} {A : Set a} (xs : List A) → (pure id ⊛ xs) ≡ xs
  identity xs = begin
    pure id ⊛ xs          ≡⟨ unfold-⊛ (pure id) xs ⟩
    (pure id >>= pam xs)  ≡⟨ MonadProperties.left-identity id (pam xs) ⟩
    (xs >>= pure)         ≡⟨ MonadProperties.right-identity xs ⟩
    xs                    ∎
  private
    pam-lemma : ∀ {ℓ} {A B C : Set ℓ}
                (xs : List A) (f : A → B) (fs : B → List C) →
                (pam xs f >>= fs) ≡ (xs >>= λ x → fs (f x))
    pam-lemma xs f fs = begin
      (pam xs f >>= fs)                 ≡⟨ MP.associative xs (pure ∘ f) fs ⟨
      (xs >>= λ x → pure (f x) >>= fs)  ≡⟨ MP.cong (refl {x = xs}) (λ x → MP.left-identity (f x) fs) ⟩
      (xs >>= λ x → fs (f x))           ∎
  composition : ∀ {ℓ} {A B C : Set ℓ}
                (fs : List (B → C)) (gs : List (A → B)) xs →
                (pure _∘′_ ⊛ fs ⊛ gs ⊛ xs) ≡ (fs ⊛ (gs ⊛ xs))
  composition {ℓ} fs gs xs = begin
    pure _∘′_ ⊛ fs ⊛ gs ⊛ xs
      ≡⟨ unfold-⊛ (pure _∘′_ ⊛ fs ⊛ gs) xs ⟩
    (pure _∘′_ ⊛ fs ⊛ gs >>= pam xs)
      ≡⟨ ≡.cong (_>>= pam xs) (unfold-⊛ (pure _∘′_ ⊛ fs) gs) ⟩
    (pure _∘′_ ⊛ fs >>= pam gs >>= pam xs)
      ≡⟨ ≡.cong (λ h → h >>= pam gs >>= pam xs) (unfold-⊛ (pure _∘′_) fs) ⟩
    (pure _∘′_ >>= pam fs >>= pam gs >>= pam xs)
      ≡⟨ MP.cong (MP.cong (MP.left-identity _∘′_ (pam fs))
                 (λ f → refl {x = pam gs f}))
                 (λ fg → refl {x = pam xs fg}) ⟩
    (pam fs _∘′_ >>= pam gs >>= pam xs)
      ≡⟨ MP.cong (pam-lemma fs _∘′_ (pam gs)) (λ _ → refl) ⟩
    ((fs >>= λ f → pam gs (f ∘′_)) >>= pam xs)
      ≡⟨ MP.associative fs (λ f → pam gs (_∘′_ f)) (pam xs) ⟨
    (fs >>= λ f → pam gs (f ∘′_) >>= pam xs)
      ≡⟨ MP.cong (refl {x = fs}) (λ f → pam-lemma gs (f ∘′_) (pam xs)) ⟩
    (fs >>= λ f → gs >>= λ g → pam xs (f ∘′ g))
      ≡⟨ (MP.cong (refl {x = fs}) λ f →
         MP.cong (refl {x = gs}) λ g →
         ≡.sym $ pam-lemma xs g (pure ∘ f)) ⟩
    (fs >>= λ f → gs >>= λ g → pam (pam xs g) f)
      ≡⟨ MP.cong (refl {x = fs}) (λ f → MP.associative gs (pam xs) (pure ∘ f)) ⟩
    (fs >>= pam (gs >>= pam xs))
      ≡⟨ unfold-⊛ fs (gs >>= pam xs) ⟨
    fs ⊛ (gs >>= pam xs)
      ≡⟨ ≡.cong (fs ⊛_) (unfold-⊛ gs xs) ⟨
    fs ⊛ (gs ⊛ xs)
      ∎
  homomorphism : ∀ {ℓ} {A B : Set ℓ} (f : A → B) x →
                 (pure f ⊛ pure x) ≡ pure (f x)
  homomorphism f x = begin
    pure f ⊛ pure x            ≡⟨⟩
    (pure f >>= pam (pure x))  ≡⟨ MP.left-identity f (pam (pure x)) ⟩
    pam (pure x) f             ≡⟨ MP.left-identity x (pure ∘ f) ⟩
    pure (f x)                 ∎
  interchange : ∀ {ℓ} {A B : Set ℓ} (fs : List (A → B)) {x} →
                (fs ⊛ pure x) ≡ (pure (_$′ x) ⊛ fs)
  interchange fs {x} = begin
    fs ⊛ pure x                ≡⟨⟩
    (fs >>= pam (pure x))      ≡⟨ (MP.cong (refl {x = fs}) λ f →
                                      MP.left-identity x (pure ∘ f)) ⟩
    (fs >>= λ f → pure (f x))  ≡⟨⟩
    (pam fs (_$′ x))           ≡⟨ ≡.sym $ MP.left-identity (_$′ x) (pam fs) ⟩
    (pure (_$′ x) >>= pam fs)  ≡⟨ unfold-⊛ (pure (_$′ x)) fs ⟨
    pure (_$′ x) ⊛ fs          ∎