{-# OPTIONS --cubical-compatible --safe #-}
open import Algebra.Lattice.Bundles using (Semilattice)
module Algebra.Lattice.Properties.Semilattice
  {c ℓ} (L : Semilattice c ℓ) where
open import Relation.Binary.Bundles using (Poset)
import Relation.Binary.Lattice as B
import Relation.Binary.Properties.Poset as PosetProperties
open Semilattice L renaming (_∙_ to _∧_)
open import Relation.Binary.Reasoning.Setoid setoid
import Relation.Binary.Construct.NaturalOrder.Left _≈_ _∧_
  as LeftNaturalOrder
poset : Poset c ℓ ℓ
poset = LeftNaturalOrder.poset isSemilattice
open Poset poset using (_≤_; _≥_; isPartialOrder)
open PosetProperties poset using (≥-isPartialOrder)
∧-isOrderTheoreticMeetSemilattice : B.IsMeetSemilattice _≈_ _≤_ _∧_
∧-isOrderTheoreticMeetSemilattice = record
  { isPartialOrder = isPartialOrder
  ; infimum        = LeftNaturalOrder.infimum isSemilattice
  }
∧-isOrderTheoreticJoinSemilattice : B.IsJoinSemilattice _≈_ _≥_ _∧_
∧-isOrderTheoreticJoinSemilattice = record
  { isPartialOrder = ≥-isPartialOrder
  ; supremum       = B.IsMeetSemilattice.infimum
                       ∧-isOrderTheoreticMeetSemilattice
  }
∧-orderTheoreticMeetSemilattice : B.MeetSemilattice c ℓ ℓ
∧-orderTheoreticMeetSemilattice = record
  { isMeetSemilattice = ∧-isOrderTheoreticMeetSemilattice
  }
∧-orderTheoreticJoinSemilattice : B.JoinSemilattice c ℓ ℓ
∧-orderTheoreticJoinSemilattice = record
  { isJoinSemilattice = ∧-isOrderTheoreticJoinSemilattice
  }